

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

Campus:II - Belo Horizonte

DISCIPLINA: Física II

CÓDIGO:2DB020

VALIDADE:

Início: Dezembro/2007

Término:

Eixo: Física e Matemática

Carga Horária: Total: 50 horas/ 60 horas-aula

Semanal: 4 aulas Créditos: 4

Modalidade: Teórica Integralização: Obrigatória

Classificação do Conteúdo pelas DCN: Básico

Ementa

Carga elétrica e matéria; lei de Coulomb; o campo elétrico; fluxo elétrico e lei de Gauss; potencial elétrico; capacitores e dielétricos; corrente elétrica; resistência elétrica; força eletromotriz; circuitos de corrente contínua; campo magnético; lei de Ampère; indução eletromagnética; lei de Faraday; ondas eletromagnéticas; lei de Lenz; indutância e energia do campo magnético; circuitos de corrente alternada.

Curso(s)	Período
Engenharia Elétrica	30
Engenharia Mecânica	30
Engenharia de Produção Civil	3°
Química Tecnológica	3°
Engenharia de Computação	· 3°
Engenharia de Materiais	30

Departamento/Coordenação: Departamento de Física e Matemática - DFM

INTERDISCIPLINARIEDADES

Drá roa	uieitae.

Física I e Cálculo II ou Cálculo IIB

Co-requisitos:

Disciplinas para as quais é pré-requisito / co-requisito:

Co-requisito: Física Experimental I; Circuitos Elétricos I (Eng. Ele.); Materiais Elétricos (Eng. Ele.).

Pré-requisito: Física III (E,M,Co); Física III B; Eletrotécnica Industrial (M); Sistemas Digitais (E); Ótica e Ondas (Qui); Instalações Elétricas Prediais(EPC); Fundamentos de Eletrônica e Instrumentação(EMat); Robótica (ECom)

Inter-relações desejáveis

Ob	jetivos: A disciplina deverá possibilitar ao estudante
1	Conhecer as equações de Maxwell na formulação integral.
2	Resolver problemas elementares envolvendo campos elétricos e/ou campos magnéticos
3	Compreender o funcionamento de dispositivos elétricos e eletrônicos por meio das leis fundamentais do eletromagnetismo.

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

Campus:II - Belo Horizonte

Uni	Carga-horária horas-aula	
1	O Campo Elétrico e A Lei de Gauss Carga elétrica e matéria; lei de Coulomb; o campo elétrico; fluxo elétrico e Lei de Gauss.	8
2	O Potencial Elétrico e Circuitos Elétricos O potencial elétrico; capacitores e dielétricos; corrente elétrica; resistência elétrica; força eletromotriz; circuitos de corrente contínua.	18
3	O Campo Magnético e a Lei de Ampère O campo magnético; o Efeito Hall; a lei de Biot-Savart; a lei de Ampère.	16
4	O Campo Magnético e a Lei de Faraday Indução eletromagnética; a lei de Faraday; a lei de Lenz; indutância e energia do campo magnético; circuitos de corrente alternada; ondas eletromagnéticas; a lei de Gauss do Magnetismo; síntese das equações de Maxwell.	18
	Total	60

Bib	liografia Ba	ásica	1					ith to a such a		
1	CHAVES,	A. S	. Físic	a Básica. El	etromagi	netismo. F	Rio d	e Janeiro: LT	C Livros	
	Técnicos e	e Cie	ntífico	s, 2007	(*)					
2	YOUNG,	Η.	D.;	FREEDMA	N, R.A	Sears	&	Zemansky	Física	III
				0ª Edição S						

Bibl	liografia Complementar
1	HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física Vol III Eletromagnetismo. 7ª Edição Rio de Janeiro: Editora LTC, 2007
2	TIPLER, P., MOSCA, G. Física para Cientistas e Engenheiros, vol 2, Eletricidade, Magnetismo e Ótica. 5ª Edição Rio de Janeiro: LTC Livros Técnicos e Científicos, 2006

athagogs Eléthos - Projection / Econo