

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS: Nova Suíça	
DISCIPLINA:	CÓDIGO:
Engenharia de Superfície	G00ENSU0.01

Início: FEVEREIRO/2023

Carga Horária: Total: 30 horas-aula Semanal: 2 aulas Créditos: 2

Natureza: Teórica

Área de Formação - DCN: Específica

Competências/habilidades a serem desenvolvidas: C1; C3; C8; C9; C11; C12; C13 (de

acordo com o item 4.1 do Projeto Pedagógico do Curso)

Departamento que oferta a disciplina: Departamento de Engenharia de Materiais

Ementa:

Introdução à engenharia de superfícies. Preparação de superfície reais de engenharia. Aspectos tribológicos e atrito nos materiais metálicos, cerâmicos e poliméricos. Recobrimento da superfície. Desgaste abrasivo, erosivo e adesivo. Introdução a lubrificação.

Curso	Período	Eixo	Obrigatória	Optativa
Engenharia de Materiais	7°	Fundamentos da Engenharia de Materiais	х	

INTERDISCIPLINARIEDADES

Prerrequisitos	
Tecnologia dos Materiais Cerâmicos	
Tecnologia dos Materiais Metálicos	
Tecnologia dos Materiais Compósitos	
Tecnologia dos Materiais Poliméricos	
Correquisitos	
-	

Obje	Objetivos: A disciplina deverá possibilitar ao estudante	
1	Apresentar aos alunos os processos de engenharia de superfície	
2	Capacitar os alunos a compreenderem a importância da superfície nos contatos tribológicos.	
3	Capacitar os alunos a compreenderem a topografia de uma superfície.	
4	Capacitar os alunos a escolherem adequadamente um material ou revestimento para uma aplicação específica no projeto de um sistema tribológico.	
5	Capacitar os alunos a conhecerem os principais mecanismos de desgastes das superfícies.	
6	Apresentar aos alunos os principais ensaios para obtenção da resistência ao desgaste dos materiais.	
7	Apresentar aos alunos o papel da lubrificação nos contatos tribológicos.	
8	Relacionar e aplicar os conhecimentos adquiridos na vida acadêmica e profissional.	

Unidades de Ensino	Carga Horária (h/a)
Introdução a engenharia de superfície, natureza das superfícies de engenharia, preparação das superfícies.	04

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

2	Caracterização da rugosidade superficial, parâmetros de amplitude e estatísticos de rugosidade, contato real entre superfícies.	02
3	Revestimentos de superfície, desempenho e técnicas de deposição.	05
4	Fundamentos da tribologia, teoria do atrito, força e coeficiente de atrito.	05
5	Desgaste nos materiais, mecanismo Abrasivo, adesivo, erosivo	06
6	Técnicas de ensaios de desgaste, apresentação de normas de ensaio, pino sobre disco, roda de borracha, caloteste e apresentação de ensaios não normatizados.	04
7	Introdução a lubrificação.	04
	Total	

Bibl	Bibliografia Básica			
4	HUTCHINGS, I. M. Tribology: friction and wear of engineering materials. 7. ed.			
'	London: Edward Arnold, 1992.			
2	WILLIAMS, J. Engineering tribology. Cambridge: Cambridge, 2005.			
2	BATCHELOR, A. W.; STACHOWIAK, G. Engineering tribology. 3. ed.			
3	Massachusetts: Butterworth-Heine, 2005.			

Bibl	Bibliografia Complementar		
1	GOHAR, R.; HOMER, R. Fundamentals of tribology. New Jersey: World Scientific		
	Publishing, 2012.		
2	DAVIM, J. P. Tribology for engineers . Connecticut: The Taunton Press, 2010.		
3	RABINOWICZ, E. Friction and wear of materials. 2. ed. New York: John Wiley		
	Professional, 1995.		
4	CARRETEIRO, R. P. Lubrificantes e lubrificação. São Paulo: Makron, 1998.		
5	MANG, T.; BARTELS, T.; BOBZIN, K. Industrial tribology: tribosystems, wear and		
	surface engineering, lubrication. New York: John Wiley Professional, 2011.		

FOLHA DE ASSINATURAS

PLANO DE ENSINO Nº 1643/2022 - CEMAT (11.51.06)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 05/02/2024 10:16)
MAYRA APARECIDA NASCIMENTO
COORDENADOR
CEMAT (11.51.06)
Matrícula: ###550#9

(Assinado digitalmente em 06/02/2024 11:03)
PAULO RENATO PERDIGÃO DE PAIVA
SUBCOORDENADOR
CEMAT (11.51.06)
Matrícula: ###123#3

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 1643, ano: 2022, tipo: PLANO DE ENSINO, data de emissão: 30/01/2024 e o código de verificação: 921cb11c46