

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS COLEGIADO DO CURSO DE GRADUAÇÃO EM ENGENHARIA DE MATERIAIS

DELIBERAÇÃO COLMAT Nº 08, DE 24 DE JULHO DE 2025.

Altera a carga horária da Disciplina Optativa G00EECSC.01 Estudo da Estabilidade e Comportamento de Sistemas Cerâmicos.

A Presidente do Colegiado do curso de graduação em Engenharia de Materiais do Centro Federal de Educação Tecnológica de Minas Gerais, no uso das atribuições legais e regimentais que lhe são conferidas, e com base na aprovação da 93ª Reunião do Colegiado do Curso de Engenharia de Materiais, realizada em 24 de julho de 2025,

RESOLVE:

Art. 1º Alterar a carga horária de 30 para 60 h/a e, consequentemente, complementar o conteúdo programático da Disciplina Optativa G00EECSC.01 *Estudo da Estabilidade e Comportamento de Sistemas Cerâmicos*, cujo Plano de Ensino se encontra em anexo.

Parágrafo Único Esta deliberação entra em vigor a partir desta data.

Dê ciência. Cumpra-se.

Prof.^a Dr.^a Mayra Aparecida Nascimento Presidente do Colegiado do Curso de Engenharia de Materiais

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

CAMPUS: Nova Suíça	
DISCIPLINA: Estudo da estabilidade e comportamento de sistemas	CÓDIGO:
cerâmicos	

Início: AGOSTO/2025

Carga Horária: Total: 60 horas-aula Semanal: 4 aulas Créditos: 4

Natureza: Teórica

Área de Formação - DCN: Específica

Competências/habilidades a serem desenvolvidas: C1; C3; C8; C9; C10; C11; C12; C13

(de acordo com o item 4.1 do Projeto Pedagógico do Curso)

Departamento que oferta a disciplina: Departamento de Engenharia de Materiais

Ementa:

Interfaces. Interface sólido/líquido: termodinâmica, formação de carga elétrica de superfície, teoria da dupla camada elétrica, medida do potencial zeta. Sistemas coloidais e particulados finos. Estabilidade de suspensões e emulsões, propriedades elétricas das interfaces; interação de London — van der Waals; teoria DLVO; previsão e modelamento da agregação/dispersão. Interações extra DLVO. Floculação e coagulação. Reagentes dispersantes, coagulantes e floculantes. Reologia. Sedimentação. Grau de agregação/dispersão. Reologia e Sedimentação de partículas. Aplicação em processamento cerâmico de colagem.

Curso	Período	Eixo	Obrigatória	Optativa
Engenharia de Materiais	10°	Processos de Fabricação		х

INTERDISCIPLINARIEDADES

1141 21(3)(3)(1) 21(4)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)	
Prerrequ	uisitos
Tecnolog	gia de Materiais Cerâmicos
Processa	amento de Materiais Cerâmicos

Objetivos: A disciplina deverá possibilitar ao estudante

Apresentar os conceitos fundamentais de preparação de dispersões cerâmicas, sua estabilidade, caracterização e utilização industrial.

	Unidades de Ensino	Carga Horária (h/a)
1	Introdução. Distinção entre os conceitos de fase, superfície, interfaces e interfases. Importância das interfases. Interfase líquido-gás: tensão superficial; energia livre interfacial; Equação de Young-Laplace; tensão superficial dinâmica; medida da tensão superficial. Propriedades da interface sólido-líquido Força entre átomos e íons. A superfície do sólido. Molhamento e ângulo de contato. Adesão. Adsorção a partir de soluções.	08

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

2	Estado coloidal. Dispersões Coloidais. Características estruturais. Teoria da Estabilidade Aplicada a Sistemas Coloidais. Materiais argilosos. Materiais não argilosos.	08
3	Cinética. Movimentos em líquidos. Movimento browniano e difusão.	06
4	Estrutura da dupla camada elétrica. Influência da adsorção específica sobre a dupla camada elétrica. Medidas de cargas superficiais. Efeitos eletrocinéticos. Eletroforese e eletroosmose. Cálculo e aplicações do potencial zeta.	08
5	Reologia de suspensões. Curvas de defloculação. Modelos matemáticos representando o comportamento do fluxo reológico. O cisalhamento. Fluxo laminar e turbulência. Elasticidade. Viscosidade. Viscoelasticidade. Reologia de sistemas saturados (pastas e barbotinas). Princípios de reometria de dispersões cerâmicas. Princípios de viscosimetria rotacional. Cilindros concêntricos. Viscosímetro cone/placa. Viscosímetro de disco. Reometria capilar. Técnicas de medição do limite de escoamento (tensão de deformação do fluido). Medidas do limite de escoamento ("yield stress"): método torque-tempo. Método de fluência.	12
6	Sedimentação. Lei de Stokes. Caracterização por gravidade e centrifugação. Ação gravitacional e centrífuga sob as partículas em um fluido. Regimes de Sedimentação. Efeito de Impedimento ("Hindered Settling"). Efeito das propriedades das partículas na sedimentação. Técnicas de caracterização: Turbiscan© e Lumisizer©.	12
7	Processo de colagem. Processo de colagem em fita.	06
	Total	60

Bibl	Bibliografia Básica	
1	REED, J. S. Principles of Ceramic Processing , 2nd Ed., John Wiley Sons, New York, 1995	
2	KINGERY, W.D., BOWEN, H.K., UHLMAN, D.R. Introduction to Ceramics. 2nd ed. Wiley. New York, 1976	
3	RICHERSON, D. W. Modern ceramic engineering: properties, processing, and use in design. 3. ed. New York: CRC Press, 2005.	

Bib	Bibliografia Complementar		
1	HIEMENZ, P.C. Principles of Colloid and Surface Chemistry . New York: Marcel Dekker, 1989. 610 p.		
2	SHAW, D. J., Trad. MAAR, J. H. Introdução à Química dos Coloides e de Superfícies. São Paulo: Edgard Blücher Ltda., 1975. 185 p.		
3	ADAMSON, A. W. Physical Chemistry of Surfaces , 5th Ed., John Wiley Sons, 1994.		
4	A. M. SEGADÃES, Diagramas de Equilíbrio de Fases: Teoria e aplicações em Cerâmicas. Edgard Blücher, Ltda, São Paulo: 1987.		

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Ensino

	D. W. RICHERSON, Mordern Ceramic Engineering. Properties, Processing and Use in Design . Segunda Edição. Editora Marcel Dekker. 1992.
_	CHANC V M. DINDAD D D KINCEDT W D Dhysical commission windings of

CHIANG, Y. M.; DUNBAR, P. B. KINGERT. W. D. **Physical ceramics: principles of ceramic science engineerging**. New York: John Wiley and Sons, 1996. 544 p.

FOLHA DE ASSINATURAS

PLANO DE ENSINO Nº 1147/2025 - CEMAT (11.51.06)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 24/07/2025 20:18)
MAYRA APARECIDA NASCIMENTO
COORDENADOR - TITULAR
CEMAT (11.51.06)
Matrícula: ###550#9

(Assinado digitalmente em 25/07/2025 08:01)
PAULO RENATO PERDIGÃO DE PAIVA
PROFESSOR ENS BASICO TECN TECNOLOGICO
DEMAT (11.55.06)
Matrícula: ###123#3

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 1147, ano: 2025, tipo: PLANO DE ENSINO, data de emissão: 24/07/2025 e o código de verificação: 64a477b800

FOLHA DE ASSINATURAS

DELIBERAÇÃO CEMAT/DIRGRAD/CEFET-MG Nº 8, DE 29 DE JULHO DE 2025

(Assinado digitalmente em 29/07/2025 11:49) MAYRA APARECIDA NASCIMENTO COORDENADOR - TITULAR CEMAT (11.51.06)

Matrícula: ###550#9

Visualize o documento original em https://sig.cefetmg.br/documentos/ informando seu número: 8, ano: 2025, tipo: DELIBERAÇÃO, data de emissão: 29/07/2025 e o código de verificação: ce08f18a0a